Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Braz. arch. biol. technol ; 64: e21200201, 2021. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1350276

ABSTRACT

Abstract in Brazil, management agricultural practices not currently consider the soil spatial variability as a result, crop growth can be non-uniform and yields often is low. This research aims to compare Kriging, Cokriging and Collocated cokriging using soil physical and hydraulic properties and their influences on soybean development. We hypothesized that spatial variability of physical and hydraulic properties has influence on soybean development and this variability can be better represented by Collocated Cokriging method. To test these hypotheses, we accessed the soil physical and hydraulic attributes in a field experiment under no-till system, cultivated with soybean. Geostatistical interpolators were applied to generate maps from which spatial dependence of the variables was evaluated. The experiment was conducted on a sandy clay loam Oxisol, on an experimental station located in Ponta Grossa, Paraná, Brazil. Evaluation of the soil attributes was performed: bulk density (BD), particle size distribution, saturated soil hydraulic conductivity (K fs ), total porosity (TP), macroporosity and microporosity. The plant was plant height and stand. Data analysis were performed by geostatistical methods; the spatial dependence was established using experimental univariate and cross semivariograms with datasets. Modeling semivariograms led to the generation of attribute maps by Kriging, Cokriging and Collocated cokriging. The estimation by Cokriging and Collocated cokriging was similar from Kriging. From the semivariogram, it was possible to identify that soil and plant attributes were spatially related with each other. The soya growth was mainly changed by slope of the area and little changed by saturated hydraulic conductivity.

2.
Braz. arch. biol. technol ; 63(spe): e20190489, 2020. tab, graf
Article in English | LILACS | ID: biblio-1142502

ABSTRACT

Abstract The soil tillage practiced over a long period of time impacts soil quality. The first step in soil quality assessment is to select which indicators should be used. The objective of this study was to identify the soil attributes that discriminate soil tillage systems and can be used as indicators for soil quality assessments. Sixteen soil physical and chemical attributes were evaluated: macroporosity (MaP), microporosity (MiP), total porosity (TP), bulk density (BD), field-saturated hydraulic conductivity (Kfs), soil resistance to penetration (SRP), pH (H2O), pH (CaCl2), aluminium (Al), calcium (Ca), magnesium (Mg), potassium (K), available phosphorus (P), total organic carbon (TOC), cation exchange capacity (CEC) and base saturation (BS), of a very clayey Red Latosol, cultivated for a long period in no-till (NT), conventional tillage (CT) and minimum tillage (MT). The soil attributes (indicators) were selected using canonical discriminant analysis. MiP, Kfs, pH (CaCl2), Ca, Mg, CEC e BS were the most efficient indicators to discriminate soil tillage systems. In the indicator interpretation step was sustained MiP as the indicator that represents the function of physical stability and support, Kfs as the indicator that represents the function of water relations, BS as the indicator that represents the function of nutrient cycling and pH (CaCl2) as the indicator that represents the function of filtering and buffering. These indicators can be used for future soil quality assessment and monitoring of tillage systems in similar regions and conditions.


Subject(s)
Soil Quality , Soil Characteristics/statistics & numerical data , Indicators (Statistics) , Discriminant Analysis , Soil Characteristics/classification , Elements
3.
Ciênc. rural ; 39(8): 2531-2534, nov. 2009. ilus
Article in Portuguese | LILACS | ID: lil-529898

ABSTRACT

O aumento da demanda pela avaliação da qualidade da estrutura do solo para o adequado crescimento de plantas tem motivado pesquisadores a desenvolverem técnicas visuais de avaliação, a campo, simples e confiáveis para esse fim. No Brasil, um número reduzido de estudos foi realizado empregando métodos visuais de diagnóstico do estado estrutural de solos no campo. Esse trabalho testou a hipótese de que o método de Avaliação Visual da Qualidade da Estrutura do Solo desenvolvido por BALL et al. (2007) para solos de clima temperado pode ser aplicado na identificação de campo da qualidade estrutural de um Latossolo Vermelho Distroférrico sob diferentes sistemas de uso e manejo. Para isso, foram avaliadas amostras indeformadas coletadas de mata preservada (M), sistema de integração lavoura-pecuária (ILP) e sistema plantio direto (SPD). A avaliação da estrutura apoiou-se na aparência, na resistência e nas características das unidades estruturais de blocos de solo e foi definida por cinco escores visuais de classificação de qualidade. O método empregado permitiu distinguir a qualidade do solo de diferentes sistemas de uso e manejo a partir da avaliação da estrutura da camada estudada.


The increasing demand for assessing soil structure for crop growth has motivated researchers to develop simple and reliable visual indicators to assess soil structure at the field. There are a few records in Brazil indicating the use of visual techniques for assessing soil physical quality. This paper tested the hypothesis that the Visual Soil Structure Quality Assessment methodology developed by BALL et al. (2007) is reliable for identifying the structural quality of tropical and subtropical soils under different soil management systems. Therefore, the overall objective of this paper was to visually identify the structural quality of an Oxisol under forest, crop-livestock rotation and no-till system. The structure evaluation was based on appearance, strength and characteristics of structural units from soil blocks, and was defined by five visual scores from the classification quality. The method allows distinguishing soil quality of the different soil use and management systems from the evaluation of the layer sampled.

SELECTION OF CITATIONS
SEARCH DETAIL